Solutions to problems - Set 11: Rearrangements

Problem 1

Complete the following transformations and explain by giving detailed mechanisms.

Problem 2

Find the structure of products after treating the following compounds at high temperature.

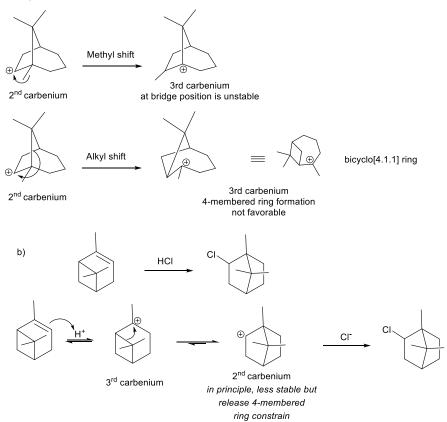
a)
$$\xrightarrow{350\,^{\circ}\text{C}}$$
 ? d) $\xrightarrow{60\,^{\circ}\text{C}}$?
b) $\xrightarrow{\text{H}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{98\,^{\circ}\text{C}}$? $\xrightarrow{\text{CO}_2\text{Me}}$? $\xrightarrow{\text{CO}_2\text{Me}}$?

Solution

b)
$$H \downarrow 5$$
 $1 \downarrow 5$ $1 \downarrow 6$ $1 \downarrow 6$ $1 \downarrow 7$ 1

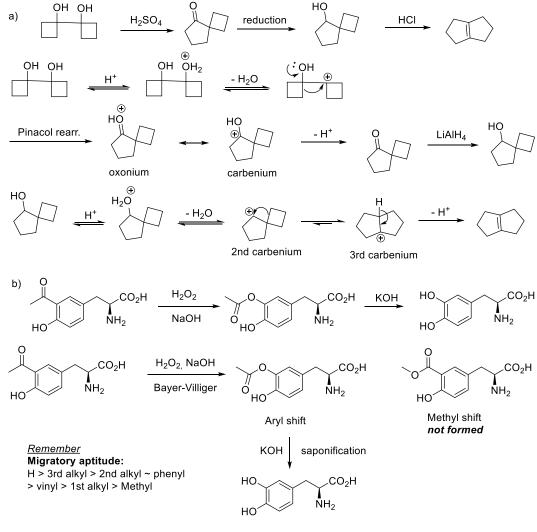
releasing 3-membered ring strain is driving force, reaction runs smoothly at lower temp.

c)
$$\frac{195 \, ^{\circ}\text{C}}{\text{Claisen}} = \frac{60 \, ^{\circ}\text{C}}{\text{Cope}} = \frac{60 \, ^{\circ}\text{C}}{\text{Cope}}$$


e)
$$CO_2Me$$
 CO_2Me CO_2Me

Problem 3

Propose mechanisms for the following transformations.


a)
$$H^{+}$$
 H^{+} H

Other posibilities

Problem 4

Complete the following transformations and explain by giving detailed mechanisms.

Mechanism of Bayer-Villiger:

c)
$$\frac{1. \text{ KOH}}{2. \text{ SOCl}_2}$$
 $\frac{1. \text{ KOH}}{3. \text{ CH}_2 \text{N}_2}$ $\frac{\text{PhCO}_2 \text{Ag}}{\text{H}_2 \text{O/THF}}$ $\frac{\text{CO}_2 \text{H}}{\text{H}_2 \text{O/THF}}$ $\frac{\text{CO}_2 \text{H}}{\text{CI}}$ \frac

(The Wolff rearrangement = Arndt Eistert Homologation)

Problem 5

Find the structure of products for each of the following reactions.

a)
$$CF_3SO_2CI, Et_3N$$
 ?

 $N-OH$ DCM ?

b) $M-CPBA$?

c) N_2 N_3 N_4 N_4 N_5 N_5

a)
$$CF_3SO_2CI, Et_3N$$
 CF_3SO_2CI, Et_3N
 CF_3SO_3
 CF_3SO_2CI, Et_3N
 CF_3SO_2CI

tertiary alkyl shift more favorable

primary alkyl shift less favorable not formed

Notes: There is retention of configuration of alkyl group which is shifted

tertiary carbenium te stabilized by 2 phenyl groups very stable

tertiary carbenium

less stable

not formed